Let’s build a simple app that helps users to create SQL queries with natural language.

Preview of the final result


This example has extra dependencies. You can install them with:

pip install chainlit openai


from openai import AsyncOpenAI

import chainlit as cl


client = AsyncOpenAI(api_key="YOUR_OPENAI_API_KEY")

Define a prompt template and LLM settings

template = """SQL tables (and columns):
* Customers(customer_id, signup_date)
* Streaming(customer_id, video_id, watch_date, watch_minutes)

A well-written SQL query that {input}:

settings = {
    "model": "gpt-3.5-turbo",
    "temperature": 0,
    "max_tokens": 500,
    "top_p": 1,
    "frequency_penalty": 0,
    "presence_penalty": 0,
    "stop": ["```"],

Add the Assistant Logic

Here, we decorate the main function with the @on_message decorator to tell Chainlit to run the main function each time a user sends a message.

Then, we wrap our text to sql logic in a Step.

async def starters():
    return [
           label=">50 minutes watched",
           message="Compute the number of customers who watched more than 50 minutes of video this month."

async def main(message: cl.Message):
    stream = await client.chat.completions.create(
                "role": "user",
                "content": template.format(input=message.content),
        ], stream=True, **settings

    msg = await cl.Message(content="", language="sql").send()

    async for part in stream:
        if token := part.choices[0].delta.content or "":
            await msg.stream_token(token)

    await msg.update()

Try it out

chainlit run app.py -w

You can ask questions like Compute the number of customers who watched more than 50 minutes of video this month.