Integrations
Embedchain
In this tutorial, we’ll walk through the steps to create a Chainlit application integrated with Embedchain.
Step 1: Create a Chainlit Application
In app.py
, import the necessary packages and define one function to handle a new chat session and another function to handle messages incoming from the UI.
With Embedchain
app.py
import chainlit as cl
from embedchain import Pipeline as App
import os
os.environ["OPENAI_API_KEY"] = "sk-xxx"
@cl.on_chat_start
async def on_chat_start():
app = App.from_config(config={
'app': {
'config': {
'name': 'chainlit-app'
}
},
'llm': {
'config': {
'stream': True,
}
}
})
# import your data here
app.add("https://www.forbes.com/profile/elon-musk/")
app.collect_metrics = False
cl.user_session.set("app", app)
@cl.on_message
async def on_message(message: cl.Message):
app = cl.user_session.get("app")
msg = cl.Message(content="")
for chunk in await cl.make_async(app.chat)(message.content):
await msg.stream_token(chunk)
await msg.send()
Step 2: Run the Application
To start your app, open a terminal and navigate to the directory containing app.py
. Then run the following command:
chainlit run app.py -w
Next Steps
Congratulations! You’ve just created your first LLM app with Chainlit and Embedchain.
Happy coding! 🎉
Was this page helpful?