Llama Index
In this tutorial, we will guide you through the steps to create a Chainlit application integrated with Llama Index.
Preview of the app you'll build
Prerequisites
Before diving in, ensure that the following prerequisites are met:
- A working installation of Chainlit
- The Llama Index package installed
- An OpenAI API key
- A basic understanding of Python programming
Step 1: Set Up Your Data Directory
Create a folder named data
in the root of your app folder. Download the state of the union file (or any files of your own choice) and place it in the data
folder.
Step 2: Create the Python Script
Create a new Python file named app.py
in your project directory. This file will contain the main logic for your LLM application.
Step 3: Write the Application Logic
In app.py
, import the necessary packages and define one function to handle a new chat session and another function to handle messages incoming from the UI.
In this tutorial, we are going to use RetrieverQueryEngine
. Here’s the basic structure of the script:
This code sets up an instance of RetrieverQueryEngine
for each chat session. The RetrieverQueryEngine
is invoked everytime a user sends a message to generate the response.
The callback handlers are responsible for listening to the intermediate steps and sending them to the UI.
Step 4: Launch the Application
To kick off your LLM app, open a terminal, navigate to the directory containing app.py
, and run the following command:
The -w
flag enables auto-reloading so that you don’t have to restart the server each time you modify your application. Your chatbot UI should now be accessible at http://localhost:8000.
Was this page helpful?